The Other Side of Beekeeping

 August 2014

 The Other Side of Beekeeping

Some More Members of the Brassicaceae

Mustards in General


While my initial intent was to deal with only what I thought of as mustards, I soon realized that this grouping of plants was inextricably linked to some of their close relatives, especially the canolas. This shows up in the early part of this writing.

Be forewarned, there are some naming problems encountered when dealing with this group of plants. One issue that is encountered is that mustards can be broken down into two basic groups; those that are used for salad greens, and those that are grown for their seeds for the production of oils or condiments such as table mustard. In some cases, depending on the variety/cultivar, a particular species might be used for both. Generally, it is only the variety/cultivar that is grown for their seeds that can greatly profit the beekeeper unless those that are grown for mustard greens are allowed to go to seed in which case they can essentially become weeds.

Another issue is that over the years, some of the scientific names for this group of plants have changed. Table 1 is included to help with this problem and presents what appear to be the current scientific names in the first horizontal line. Synonyms are presented as indented entries in columns under their current accepted scientific names. The synonyms that I consider to be most relevant to this discussion are presented in bold type. The remainder seemed to be relatively obscure since they were not encountered during my literature review for the preparation of this article. They do exist, however, and beware that as you begin reading on your own, you may run into one or more of them. Members of this group frequently have several common names. Sometimes they are called mustards or rapes1 of various types, and some now bear the more prestigious Canola name. In the nonscientific and ‘semiscientific’ literature it is sometimes difficult to correlate a particular plant’s common (nonscientific) name with its scientific name. Occasionally, I found the same common name was applied to more than one species.

There are several mustards grown in North America, probably all originating in Europe and/or Asia. Some have become widely dispersed weeds through much of North America (See included maps). I have included maps of the closely related species that contain the canolas as an indication of how widespread this general group of plants has become. Some of them are now listed in the weed manuals of United States and Canada. There are generally three species of mustard that are grown for their seed to be used in the manufacture of the condiment mustard (Sinapis alba, Brassica nigra and Brassica juncea).[16] In much of the apicultural literature, especially the older literature featuring these plants, the names are, for lack of a better term, ‘jumbled’ together. This writing contains some of that ‘jumble’, especially where comparisons between species are being made.

Despite the naming ‘jumble’ described above, in some of the apiculture literature the group is simply referred to as mustard. Oertel[19], from his questionnaires, found mustards to be important in: CA, ND, IA, ID, IL, IN, KS, LA, MA, ME, MT, NC, NY, OR, UT, WA, NJ, TX, WI and WY. Ayers and Harman[2] could not distinguish the various mustard species referred to by the respondents of their questionnaires. They did find what was referred to as ‘mustard’ by the respondents to be important in the U.S. in: AL, AR, AZ, CA, CO, IA, ID, IL, IN, KY, MD, MI, MO, MS, NJ, NV, OK, RI, SC, TX, UT, VT, WA, WI and WV and to be particularly important in OH. In Canada it was important in BC, MB, NB, NS, ON, QU and SA and was found to be particularly important in parts of BC.

The family is also the source of canola oil. Canola is not a species, but members of the family Brassicaceae that have been genetically manipulated to produce seeds that provide oil, which meets the standard of having less than two percent erucic acid in its fatty acid profile and less than 30 micromoles of glucosinolates/gram of air dried, oil free solids. The structure of erucic acid and a generalized structure of a glucosinolate and an explanation of associated concentrations are provided in Figure 1. Erucic acid is thought to be linked to adverse heart health issues and glucosinolates have been implicated in adverse thyroid effects. The glucosinolates provide the pungent taste associated with plants from the Brassicaceae, for example, the taste of mustard. After the canola oil is extracted from the seeds the remainder of the seed is frequently fed to livestock. The low glucosinolate residue is more palatable to, and probably better for, the livestock than the residue leftover from noncanola seeds derived from the Brassicaceae. The first plants with these characteristics were developed in Canada and hence the ‘Can’ part of the name. The ‘Ola’ came from the fact that the plants with these characteristics are used to produce oil derived from the seeds. There is, however another explanation of the name that is sometimes found, though it seems to be less accepted. It is derived by taking beginning letters of the words ‘Canada’, ‘oil’, ‘low’ and ‘acid’ [Can(ada)+o(il)+l(ow)+a(cid)] . Three Brassicas are now grown for canola oil, Brassica napus (Argentine canola), Brassica rapa (Polish canola), and more recently Brassica juncea (brown mustard/Indian mustard etc.).

This column provided information about canola in November and December of 2009. Much of that is still pertinent today. At that time, however, I was not aware that Brassica juncea either was, or was about to become, a member of the ‘Canola family’. At this time it seems to be primarily important as a canola only in Canada.

There are at least five, probably six European/Asian species of the Brassicaceae that have been spread through much of North America and become common ‘weeds’ in their new home. They include: Brassica rapa (field mustard or turnip and a canola), Brassica juncea (Brown, Chinese, or Indian mustard), Brassica nigra (black mustard), Sinapis arvensis (Charlock or wild mustard) and Sinapis alba (white mustard) and perhaps to a lesser extent Brassica napus. All have human uses (oils, condiments and/or leafy green vegetables), but when they escape cultivation can become what many would consider weeds. While they may be considered weeds by many, they also have the potential of being good bee forage. In cases where mustards are grown for seed, compared to crops like alfalfa grown for large animal forage (see this column June 2004, p465), bees will generally receive full benefit from the flowers.

For readers who might be interested in planting members of this group of Brassicas for bees, I highly recommend ‘looking before you leap’. There is what I consider an extensive set of regulations governing the growing of these plants in at least some states. I discovered them by ‘Goggling’ “legal restrictions growing rapeseed ----------” (-------indicates state of interest).
The current major areas of mustard cultivation seem to be Alberta, Manitoba and Saskatchewan in Canada, and Idaho, Montana, North Dakota, Oregon and Washington in the U.S., with North Dakota producing the ‘lion’s share’ of that production.[4]
Additional information about Brassica nigra, and Sinapis arvensis is provided below. Brassica juncea will be included in the September column. Information about Sinapis alba can be found in the September 2009 column, and information about Brassica rapa and Brassica napus (both canolas) can be found in the November and December 2009 columns.
Remember that ... read the complete article please click here to subscribe