The Other Side of Beekeeping

 September 2014

 The Other Side of Beekeeping

More Members of the Brassicaceae

(excerpt)
 
 

Brown mustard, Chinese mustard, Indian mustard, leaf mustard, mustard greens


Scientific name: Brassica juncea

Synonyms: Brassica integrifolia, Brassica japonica, Brassica willdenowii

Origin: Eurasia, possibly Southwest Asia and India[17].
 
Plant description: Brassica juncea is a glabrous1 and often glaucous annual2 that grows to 30-100 cm (~11.8-39.4 in) in height. The lower leaves are petiolate3, up to 20 cm (~7.9 in) long and are lyrate-pinnatifid4 and dentate.5 The upper leaves are oblong6 and either entire or dentate, and either have short petioles or are sessile.7 The flowers are yellow, 12 to 15 mm (~0.47-0.59 in) wide with the mature pedicels8 slender and ascending.9 The sepals generally are 4-6 mm (~0.16-0.24 in) long, but occasionally are as short as 3.5 mm (~0.14 in), and as long as 7 mm (~0.28 in). The petals are generally 9-13 mm (0.35-0.51 in) long, but are occasionally as short as 7 mm (~0.28 in). The siliques are also ascending, subterete10 and 3-6 cm (~1.2-2.4 in) long. The two valves11 are strongly single veined. The seeds are ~2 mm in diameter, and conspicuously and evenly reticulate.12[2 & 4]

Distribution: Initially, B. Juncea was considered inferior to B. nigra for the commercial manufacture of condiments. Then in the 1940s a Chinese yellow-seeded variety of the species began to be cultivated in the High Plains of North America. When lines of the new variety as well as some of the lines of other species solved the problems associated with mechanical seed harvest of Brassica nigra that were described in the August 2014 column, Brassica juncea soon replaced B. nigra.[17] The major commercial mustard-producing areas became Alberta, Manitoba and Saskatoon in Canada and North Dakota, Oregon, Washington, Idaho and Montana in the U. S., with by far the greatest production coming from North Dakota[5 and internet].

Voss and Reznicek[19], writing about Michigan plants, indicate that as a weed Brassica juncea is found on shores, along railroads, in dumps and fields and disturbed ground. In Ontario it is similar to, though less common than Sinapis arvensis, and is found throughout Ontario, most frequently in cultivated fields and gardens, but occasionally also in fence lines, along railroads and in waste areas.[1] In the Great Plains, where it has escaped areas of cultivation, it is distributed in fields and waste places.[4] The 2012 Jepson Manual[2] indicates that it is generally uncommon in California, but can be found in disturbed areas and fields at < 300 m (~984 ft) and in the Great Central Valley.

Blooming period:
The species blooms April to October in the Great Plains[4]. Pammel and King[14] report the species blooming in Iowa during June and early July, but provide their only bee visitation data for August 27 and September 1, both 1916. Both dates are reported as being cool. During the latter date they provide the information that bees were working the plants for both pollen and nectar. The reported blooming dates for California vary, depending on the author, from May-September[2] or June-September.[12] While Burgett et al.[6] indicate that the species is not particularly common in Oregon, they indicate that it blooms there May-July.

Importance as a honey plant: Considering that the Brassica juncea has recently made it into the ‘elite canola group’and has been involved in the production of the condiment mustard, the American bee literature seems surprisingly quiet about Brassica juncea. Perhaps this is because when the species escapes cultivation, it looks much like some of the other ‘escapees’ of the genus. See, however Honey Potential below. Pammel and King[14] reported that the species is frequently visited by honey bees, which they consider a normal visitor compared to flies and beetles, that at the time apparently were reported on other mustards. Milum[11] places Brassica species in general in his tertiary or minor plants list indicating that if the plants were more common they might be raised to a higher level of importance.

Honey potential: Eva Crane et al.[7], depending on where the plant was being grown, rate the species as a N1, a major source of surplus honey (India, Pakistan and or N2, a medium source of surplus honey (Punjab region of India collected by Apis cerana and Pakistan again collected by Apis cerana and the USSR by Apis mellifera). They also provide information from different publications that the nectar sugar concentrations found by the various researchers were 38-46%, 28-36% and 22-65%, all of which Crane et al.[7] considered medium concentrations. They report honey flows in Pakistan of 5-7 kilograms/colony/season (~11-15.4 lbs/colony/season), but this was mixed with a flow from Brasica campestris (Brassica rapa). They also provide a honey potential of 50/60 kg/ha (~44.5-53.5 lbs/acre) from southeastern USSR.

Because the mustards originally came from Eurasia, and have been grown throughout the region for many years, it is interesting to see how beekeepers and biologists closer to its native lands generally view the species. The species grown in the British Isles, are primarily Brassica juncea and Sinapis alba. Originally Brassica nigra was also grown there, but has been largely replaced by Brassica juncea because the seed is easier to harvest (see discussion under Brassica nigra in the August 2014 column). Kirk and Howes[9] writing about bee forage of the British Isles, discuss Brassica juncea and Sinapis alba together. They consider them to be of similar value to bees, both producing a “copius supply of nectar as well as pollen”, and to produce a similar and characteristic type of honey. In the British Isles, Sinapis alba is cultivated as a forage crop, as a green manure and as a cover crop. There, selected varieties of mustard are planted in advance of main commercial plantings to reduce weeds, pests and diseases because the plant has a “biofumigant action in the soil”. The blooming period depends on the purpose of use, therefore planting date. Since blooming period is dependent on planting date, I speculate that when it comes to planting for bees, where the intent is to fill a honey dearth period, these plants could be useful in performing that function. On their 3-point scale Kirk and Howes[9] rate the species as a 3 (their highest rating) for its beneficial effects on both honey bees and both long- and short-tongued bumblebees and as a 2 for solitary bees.

Honey: Again the American literature seems very quiet about Brassica juncea including its honey. Kirk and Howes[9] discussing both the mustards Sinapis alba and Brassica juncea together, describe the honey as being whitish in color with a mild flavor, but when fresh, can have a strong aroma and flavor and then tends to leave a “slight burning sensation” in the mouth. They also report that it granulates more rapidly than most honeys.

Pollen: Crane et al.[7] report that the pollen is yellow and that the plant is a major source of pollen in the Punjab region of India, as well as a unrated source of pollen in Pakistan.

Prince’s plume, desert prince’s plume, desert plume


Scientific name:
Stanleya pinnata

Synonyms: Stanleya bipinnata, Stanleya integrifolia, Cleome pinnata

Origin: Native to North America

Plant description:
My experience growing this species from seeds from different sources suggests that Stanleya pinnata is a somewhat variable species. Its appearance also seems to be affected by the soil in which it is growing. Together, these factors make the species difficult to describe succinctly. It is generally a shrubby or ‘subshrubby’ perennial13, sometimes somewhat woody, can be glaucous14 or not, and is mostly glabrous.15

The several to many stems are generally erect, can be branched or not and are usually within a height range of 30-120 cm (~11.8-47.2 in), but can be as short as 12 cm (~4.7 in) or as tall as 153 cm (60.2 in). In mature plants, the basal leaves are often largely absent.16 The stem leaves have 0.7-6.2 cm (~0.2-2.4 in) long petioles, are somewhat fleshy (succulent) and become smaller in higher reaches of the plant. Beyond that they are variously described as being differently shaped in outline and usually entire[4] to pinnately17 lobed, the depth of the indentations between the lobes being undefined.

The inflorescence is a somewhat dense (congested) raceme18 occasionally reaching lengths of perhaps a foot (~30.5 cm). The sepals19 are linear, glabrous and 10 to 15 mm (~0.39 to 0.59 in) long. They are a little unusual for sepals, being yellowish and relatively large, and become more obvious as the flower ages. At first glance you might

....to read the complete article please click here to subscribe