Newsnotes

 November 2014

(excerpt)

Evolutionary History of Honey bees Revealed by Genomics

In a study published in Nature Genetics, researchers from Uppsala University present the first global analysis of genome variation in honey bees. The findings show a surprisingly high level of genetic diversity in honey bees, and indicate that the species most probably originates from Asia, and not from Africa as previously thought.

The honey bee (Apis mellifera) is of crucial importance for humanity. One-third of our food is dependent on the pollination of fruits, nuts and vegetables by bees and other insects. Extensive losses of honeybee colonies in recent years are a major cause for concern. Honey bees face threats from disease, climate change, and management practices. To combat these threats it is important to understand the evolutionary history of honeybees and how they are adapted to different environments across the world.

“We have used state-of-the-art high-throughput genomics to address these questions, and have identified high levels of genetic diversity in honeybees. In contrast to other domestic species, management of honey bees seems to have increased levels of genetic variation by mixing bees from different parts of the world. The findings may also indicate that high levels of inbreeding are not a major cause of global colony losses”, says Matthew Webster, researcher at the department of Medical Biochemistry and Microbiology, Uppsala University.

Another unexpected result was that honey bees seem to be derived from an ancient lineage of cavity-nesting bees that arrived from Asia around 300,000 years ago and rapidly spread across Europe and Africa. This stands in contrast to previous research that suggests that honey bees originate from Africa.

“The evolutionary tree we constructed from genome sequences does not support an origin in Africa, this gives us new insight into how honeybees spread and became adapted to habitats across the world”, says Matthew Webster.

Hidden in the patterns of genome variation are signals that indicate large cyclical fluctuations in population size that mirror historical patterns of glaciation. This indicates that climate change has strongly impacted honeybee populations historically. “Populations in Europe appear to have contracted during ice ages whereas African populations have expanded at those times, suggesting that environmental conditions there were more favorable”, says Matthew Webster.

The researchers also identified specific mutations in genes important in adaptation to factors such as climate and pathogens, including those involved in morphology, behavior and innate immunity.

“The study provides new insights into evolution and genetic adaptation, and establishes a framework for investigating the biological mechanisms behind disease resistance and adaptation to climate, knowledge that could be vital for protecting honey bees in a rapidly changing world”, says Matthew Webster.

Bacteria from Bees Possible Alternative to Antibiotics

Raw honey has been used against infections for millennia, before honey - as we now know it - was manufactured and sold in stores. So what is the key to its antimicrobial properties? Researchers at Lund University in Sweden have identified a unique group of 13 lactic acid bacteria found in fresh honey, from the honey stomach of bees. The bacteria produce a myriad of active antimicrobial compounds.

These lactic acid bacteria have now been tested on severe human wound pathogens such as methicillin-resistant Staphylococcus aureus(MRSA), Pseudomonas aeruginosa and vancomycin-resistant Enterococcus (VRE), among others. When the lactic acid bacteria were applied to the pathogens in the laboratory, it counteracted all of them.

While the effect on human bacteria has only been tested in a lab environment thus far, the lactic acid bacteria has been applied directly to horses with persistent wounds. The LAB was mixed with honey and applied to ten horses; where the owners had tried several other methods to no avail. All of the horses’ wounds were healed by the mixture.

The researchers believe the secret to the strong results lie in the broad spectrum of active substances involved.

“Antibiotics are mostly one active substance, effective against only a narrow spectrum of bacteria. When used alive, these 13 lactic acid bacteria produce the right kind of antimicrobial compounds as needed, depending on the threat. It seems to have worked well for millions of years of protecting bees’ health and honey against other harmful microorganisms. However, since store-bought honey doesn’t contain the living lactic acid bacteria, many of its unique properties have been lost in recent times”, explains Tobias Olofsson.

The next step is further studies to investigate wider clinical use against topical human infections as well as on animals.

The findings have implications for developing countries, where fresh honey is easily available, but also for Western countries where antibiotic resistance is seriously increasing.

Sunspot Activity Affects Honey Bees’ Ability to Find Their Way Home

Fluctuations in magnetic fields, including those caused by solar storms, may interfere with the magnetoreceptors in honey bees so that fewer bees return to their hives from foraging trips. A new study published today in the Journal of Apicultural Research finds that this disruption may be so severe that the flying bees disappear from their hive and that these losses may contribute to colony failure.

Bees can sense and use the earth’s magnetic fields to help them to identify their position and find their route home. This ability called magnetoreception is similar to that found in birds, fish and dolphins. Whilst bee magnetoreception has long been known, this new paper by Dr Thomas Ferrari from Pollen Bank, California, USA, for the first time identifies solar activity as one of the many causes of honey bee disappearance.

Widespread honey bee colony loss is not a new problem, and we now understand that many of these losses are due to various interacting factors including pests, diseases, pesticides and availability of suitable forage. Yet sometimes bees disappear without showing signs of illness, leaving adequate food, healthy brood but only a small cluster of bees. With good husbandry these remaining bees can sometimes be restored into a vibrant colony, and the disorder is not transmitted to other colonies. This situation can be distinguished from swarming behaviour and is one form of colony collapse - the flying bees simply vanish and their colonies fail.

Like humans, bees use several different senses for navigation, but magnetoreception seems to become increasingly important the further the bee is from its hive. Through a series of experiments that subject foraging bees to magnetic fields to disrupt their ability to navigate, Dr Ferrari shows that they are less able to find their way home. Their homing ability also seems to be affected by uncontrolled, natural fluctuations in the Earth’s magnetosphere. The study links documented periods of increased levels of solar storms and disruption to the magnetosphere to increased levels of honey bee colony loss.

IBRA Science Director Norman Carreck says: “For humans, the impact of sunspots on magnetic fields and their effects on bees is a difficult concept to grasp. Perhaps we could liken it to humans, who rely on sight, becoming lost in fog when we have no visual clues to help us identify our location. In unfamiliar territory any landmarks would be harder to recognise, so we find it harder is to work out where we are. This interesting study throws light on a curious aspect of bee biology. It is only part of the story of colony losses, but an aspect which merits further study.”


Natural American Foods Drive Sales with USA-Made Smokey the Bear Honey

New Natural American Foods Line
Benefits USDA Forest Service,
Supports American Beekeepers


ONSTED, Mich. (Aug. 26, 2014) – Natural American Foods, a worldwide leader in honey processing and distribution, is launching nationally  its USA-made, Grade A, Smokey the Bear branded honey for retailers.  Through an innovative partnership with the USDA Forest Service, a portion of the proceeds from every sale of Smokey the Bear honey goes to support educational efforts on wildfire prevention (www.Support-Smokey.com). In addition, this new line supports American beekeepers by sourcing honey directly from U.S. hives. The honey category is on the rise, growing at four times the rate of that of jelly and jam.

“Smokey the Bear is synonymous with fire prevention, and bear packaging is a familiar sight for retail honey customers.  We married the two ideas to create a

PROCEEDINGS OF THE AMERICAN BEE RESEARCH CONFERENCE NOW AVAILABLE!

 The 2012 American Bee Research Conference was held February 7-8 at APHIS Headquarters in Greenbelt, MD in conjunction with the annual meeting of the Apiary Inspectors of America.  The twenty-sixth American Bee Research Conference will be held in Hershey, PA in conjunction with the annual meeting of the American Honey Producers Association in January 2013.  To access these abstracts now, click on the link below. These abstracts represent some of the latest bee research being conducted in the United States.  Enjoy!

icon 2012_Proceedings_ABJ.pdf (565 KB)