Field Guide to Beekeeping archives

June 2014

 Miscellaneous Beekeeping Equipment

by Jamie Ellis

(excerpt)

I have written 3 articles about the various pieces of equipment that are used commonly while beekeeping. In the articles, I discussed the Langstroth hive (February 2014), personal protective equipment (March 2014), the hive tool, and smoker (April 2014). I am concluding this four-part series on beekeeping equipment by discussing miscellaneous items that I find quite useful to own as a beekeeper and have with me every time I visit an apiary.

I hope I convinced you in my earlier articles that beekeeping really is an art, one that is practiced by thousands of individuals but mastered by none. Because of this, I find that bee management is 10% truth and about 90% opinion, the latter being held by the artist (beekeeper) who has his or her own way of doing things. This is relevant to a discussion of “miscellaneous beekeeping equipment” because I will discuss items that I find indispensable, but that other beekeepers might find trivial. I am not foolish enough to demand that you do things my way. After all, the beauty of art is that the outcome is “right” to the creator, regardless of the opinion of others. Likewise, time will teach you what equipment is useful to you and this will vary based on (1) who your mentor(s) is (are)(i.e. how you learned to do things), (2) what style of beekeeping you employ, and (3) your particular goals as a beekeeper. That said, I have developed a list of tools I find useful and I believe you should at least consider owning, if not having with you every time you work bees.

1) The frame holder (or frame rest – Figure 1) – The frame holder is a metal device that attaches to the outside wall of a hive body and has two metal bars that project perpendicular to the hive body. The bars run parallel to one another and are spaced at such a distance to accommodate a frame. The purpose of the frame holder is…(you guessed it)…to hold frames while working a colony. As you know, it is easier to work a colony when one of the frames is removed from the box in which one is working. Most beekeepers, myself included, usually just rest one end (side) of the frame on the ground and the other end against the hive or hive stand. This is ok but it requires you to bend down when manipulating that frame. Work bees long enough and you will realize that you have to be as nice as possible to your back; therefore, you will try to find ways to keep from bending over! Furthermore, grass, leaves, dirt, etc. stick to the part of the frame contacting the ground. This is a nuisance to remove when you are ready to return the frame to the hive. Finally, bees often crawl off a frame resting on the ground and go under the hive, crawl into the stacked supers, etc. The queen can do this as well if she is on the frame. Consequently, I prefer to put any frame I remove from the colony on the frame holder. My frame holder can accommodate 5 frames.
2) 9-frame spacer (Figure 2) – Standard Langstroth supers and hive bodies are made to accommodate 10-frames. Bees can store more honey in a 10-frame super that contains only 9 frames. This is because the bees will “pull out” the wax (make longer cells) on 9 frames spaced to fill a 10-frame hive. Of course, it is easy to violate bee space in a super that contains only 9 frames. So, I like to have a 9-frame spacer which I use to help me space the frames correctly once I have finished working a super. The 9-frame spacer is pushed down on the frames from above, thus distancing the frames correctly from one another. Incidentally, I like the 9-frame spacer that is held and used manually rather than the one that is attached permanently inside the hive body or super on the ledge that holds the frames. While the latter certainly works, I find that they can get in the way while I work the colony. I will note that I even use 9 frames in my hive bodies (brood supers). I like the extra management space that having 9 frames creates. Of course, a 9-frame spacer is not necessary if you use 10 frames in all hive boxes. Some people even use 8 frames in a 10-frame super; consequently, 8-frame spacers are available for purchase.

3) Ratchet straps (Figure 3) – I find ratchet straps to be indispensable in beekeeping. While many beekeepers never plan to move their hives, I find that all hives become migratory at some point in their existence. Perhaps you live in a subdivision and have no intention of moving your bees to an alternative nectar flow or to pollinate a crop. However, you never know when you may have to move your bees and having ratchet straps handy makes moving bees easier. Moving bees is true work (I will write an article on this topic in the future). Hives are heavy and cumbersome. A hive is composed of multiple boxes, a bottom board, a lid, etc. These have a tendency to slip past one another while a hive is in transit. Shifting supers is not good because it opens gaps in the hive through which bees can escape. Supers, hive bodies, bottom boards, lids, etc. will NOT shift if a ratchet strap is secured around the colony height-wise. Ratchet straps also can be used to secure hives while the colonies are in transit, hold equipment together, etc. They are cheap and available at nearly every hardware store. They are worth owning.

4) Boardman entrance feeder (Figure 4) – There are a million ways to feed bees. This will be the subject of a future article in my column. There are a lot of feeder styles as well. Though I prefer to provide the food to bees from above their cluster, I find a Boardman entrance feeder to be quite helpful, first as a quick way to feed bees and second as a good way to give the bees water in an area where streams, rivers, lakes etc. are not abundant. As noted, I feel that putting feeders above the bee cluster is the best way to deliver food to a colony. However this either requires one to purchase bulky hive top feeders or use migratory lids that accommodate feeder jars. I use telescoping covers (see my column in February 2014) and I do not want to cut holes in them to accommodate feeder jars. So, I find Boardman entrance feeders to be a cheap, easy alternative to feeding colonies. They are composed of 3 parts, the stand that slides into the entrance of the colony, the jar lid that contains perforations and which fits into the circular hole in the top of the feeder, and the jar. The jar can be any type of “small mouth” glass jar. I would not use a jar any smaller than a quart in size, though I much prefer the half gallon jars that you can purchase from your local beekeeping equipment distributor. I especially like Boardman entrance feeders because I have to provide water to my colonies year-round because there are no local water sources my bees can access. I give my bees water using the entrance feeder to keep them out of my neighbor’s horses’ water troughs.

5) Entrance reducer (Figure 5) – One of the things that I like about beekeeping is that, for the most part, we name items appropriately descriptive. The item I am describing next exemplifies this. The entrance reducer is a tool, usually made of wood, which is used to reduce the entrance of a colony. Colony entrances occasionally need to be reduced. In my experience, the entrance to a colony is usually much larger than feral bees would choose for themselves if looking for a home in a tree, a wall, the ground, etc. Big entrances can be hard for the bees to protect from other bees and pests and the entrances can be drafty. A lot of beekeepers will reduce the colony entrance during winter, thus, supposedly, helping the bees to keep the nest warm. Of course, you can use anything to reduce the nest entrance. I have used grass clippings, old clothes (t-shirts, socks, and underwear are my old clothes of choice), blocks of wood, etc. But why not use something made especially for the job? Most entrance reducers supplied by manufacturers have two sizes of notches cut in the reducer, thereby accommodating two sizes of reduced entrances.

 

 May 2014

 

 Personal Protective Equipment for the Body

by Jamie Ellis

(excerpt)

Flip through any beekeeping equipment catalogue and you will be overwhelmed by the huge diversity of equipment available to beekeepers. There are gadgets, gizmos, must-haves, useful tools, and equipment about which one is left to scratch their head and wonder what the purpose actually is. I enjoy getting the various companies’ equipment catalogues yearly just to see what new gadgets beekeepers have invented and coerced the equipment companies to sell. Beekeepers are ingenious and their creativity spawns some really good ideas.
Though you may not know it, I am three articles deep into a four-part series on beekeeping equipment. In March, I reviewed the basic parts of the Langstroth hive. I wrote about personal protective equipment in April. I am going to continue the four-part series on beekeeping equipment by discussing what I believe to be the two most important tools in the beekeeper’s arsenal. These gadgets are simple, as most of the best inventions are. They are also indispensable, veritable “must haves” for every beekeeper. They are, of course, the hive tool and smoker.

Hive Tool
One of the things I like about beekeeping is that we are, for the most part, so literal with our equipment nomenclature. Consistent with this tradition, the “hive tool” literally is a tool that we use in/on the hive. In its most basic form, the hive tool is a flat piece of metal that is curved at a 90º angle on one end (the “scraper” end) and widened/flattened on the opposite end (Figure 1). There may be a hole in the tool close to the scraper end that can be used to pry nails out of wood. The genius of this tool is its simplicity in design but usefulness in function.

Hive tools are used by beekeepers principally to pry supers apart, leverage frames out of the supers, and scrape wax/propolis/whatever from various hive components. Most of the hive tool’s function is derived from the fact that bees use propolis, the beekeeper term for the plant exudates, resins, and saps that bees collect and use inside the hive. Bees glue supers together, frames inside hives, etc. using propolis. The product is so sticky that a hive simply could not be taken apart and frames removed without the prying abilities of hive tools. Make no mistake: this is a job for the hive tool. Accept no substitutes. Over the years, I have used butter knives, screwdrivers, etc. to work colonies. All pale in comparison to the hive tool in durability and functionality. Hive tools are the biggest steal among all beekeeping equipment. They are economical and essential. How often can we say that about something?
Of course, people are always trying to improve upon the basic hive tool design. I have seen long hive tools, skinny hive tools, fat hive tools, strangely-shaped hive tools, and more. Personally, I am old fashioned when it comes to using hive tools. However, I have discovered that beekeepers usually most like what they originally used. So, feel free to use the more modern tools.

Other points to consider when using hive tools:

  • Hive tools are EASY to lose, or so I am told. Personally, I use the same hive tool I have had since I was 12. However, most people I know go through hive tools at the same rate that they go through toilet paper (a lot, people). Buy more than one. Keep one in your truck, one with your suit, one with your toolbox, one under your pillow, etc. You will thank me if you do.
  • Put your hive tool into your pants pocket, bee suit pocket, or something similar while working bees. My philosophy is that my hive tool ALWAYS goes into my back right pocket while working bees. I never put it on the ground, on the hive, in the truck, etc. Most of today’s bee suits have special pockets for hive tools. I have even seen work belts that have magnetic strips onto which one can magnetically attach their hive tool.
  • If you elect to keep your hive tool in your back pocket, put it curved side down, sharp end up and out of the pocket. Putting it curved side down keeps it in the pocket; otherwise, the curved side pointing out of your pocket makes it top heavy and likely to fall out of your pocket. Pointing the sharp end away from the body when the hive tool is in your pocket is insurance against ham punctures.☺ Do not forget to remove the hive tool from your pocket once the work is done and before you sit down. I know a lot of beekeepers who slice up their truck seats because they forgot to remove the hive tool from their pocket.
  • Hive tools are easy to sterilize (put them into a lit smoker) and clean (use another hive tool to scrape off the wax/propolis). You should do both often.
  • Some people sharpen both ends of their hive tools yearly. I do not find this to be a necessary task.
  • In case you have forgotten – BUY MORE THAN ONE!


Smoker

People have been using smoke to calm bees for thousands of years. There are early cave/cliff paintings of honey robbers holding smoldering plants, pots, and other such items. It is not fully known when smoke was first used to work with bees or even how its usefulness was discovered. However, it is undeniable that smoke has been an important part of honey hunting and beekeeping for a long time.

How does the smoker work? Great question. I have heard many answers to this question. Many people feel that smoke causes bees to gorge on honey, perhaps because they “fear” a fire is coming and are preparing to leave the nest. However, I have smoked the mess out of colonies before and could not get them to leave their nests. If it is fire preparation, they are either lousy at knowing when to go or have a super high threshold for smoke. I grew up being told (1) it was preparation for fleeing a fire and (2) that full bees could not fly well, hence they could not sting you. I believed this for a long time until I thought through the logic of both statements (i.e. why would they gorge to leave a fire if gorged bees are too heavy to fly?). I have heard other variations of the gorging scenario as well (for example, engorged bees are not inclined to sting – which may be true – seems like a good project). Do not misunderstand me: bees do appear to gorge on food stores when smoked. I just do not believe we fully know why.

A more likely explanation concerns a masking of bee communication abilities by the volume of smoke pumped into the nest (though, I have seen no research to support this idea either). Bees communicate principally through pheromones, or chemical smells, that they must perceive with their antennae. A colony gearing up for a defensive response produces alarm pheromone. Smoke may mask the alarm pheromone or occupy the bees’ sensory receptors, thus minimizing the defensive response. Smoke may “cover up” the alarm pheromone, much the same way cologne or bathroom spray works for us.

Like the hive tool, the smoker is a beautifully simple device. It is composed of 4 main parts (Figures 2 and 3): the bellow, the body (or firepot), the funnel-shaped lid, and the internal grate. When the bellow is squeezed, air is forced out a small hole in the bottom of the bellow through a small hole in the back of the smoker body (Figure 2). The air is forced up through the smoker body and out the nozzle in the smoker lid. Air is pulled into a hole at the top of the bellow when the bellow is relaxed. I have outlined in Figure 4 the steps of successfully lighting a smoker. A well-lit smoker is only an asset, though, if it is used correctly.

The correct use of a smoker, i.e. how much to smoke a colony, is a ...

April 2014

 

 Personal Protective Equipment for the Body

by Jamie Ellis

(excerpt)

Honey bees sting. Tell anyone that you work with bees and they immediately ask, “Have you ever been stung” (well, they ask that right after they ask, “Are cell phones killing bees?”). It is the bee’s sting that causes most people not to want to associate with honey bees/beekeeping. After all, who would willingly work with an insect that can inflict physical pain? However, stings are a reality for beekeepers, a reality that must be addressed prior to one’s engagement in the profession. Fortunately, beekeepers have numerous options when it comes to protecting themselves from stings.

Humans interacting with honey bees have been wearing personal protective equipment (PPE) since their relationship with bees started. The allure of honey and other hive products was simply too great for man to ignore; so, man had to develop ways of working with bees to minimize stings. The evolution of beekeeper PPE was slow, often comical, and even remains stalled in many parts of the world. I was in a developing country years ago and the beekeepers there simply did not have the resources to purchase or even make PPE. One beekeeper poked two eye holes in the bottom of a shoe box and then rubber-banded the box to his head to protect his face while working his hives. This shows you the great lengths that one will go in order to interact with bees.

All beekeepers, aspiring and old-timers alike, have to confront the reality of bee stings and devise a game plan for working with bees. Some beekeepers take the “full space suit approach”, being suited up from head-to-toe to protect against the flying darts. Other beekeepers take the minimalist approach and would work their bees naked if public decency laws allowed. The good news about PPE is that there is no right way to work bees, though there are good recommendations that should be considered.

Of course, personal safety is paramount and should always be considered when one is contemplating what to wear while working with bees. Honey bees are not domesticated in the sense that we have tamed them and bred out their wild tendencies. All colonies are capable of mounting a massive flying assault, assaults which can be unpredictable and even deadly if not handled property. The vast majority of European honey bee races are considered docile if managed and handled appropriately. This fact, though, can lull people into believing that they need not use or even own PPE, that they are “bee whisperers” who can tame any colony. This is not a safe belief as it completely ignores hive “personality” which can change on a whim. Beekeepers of all levels of experience should recognize the sting potential associated with every colony and plan their use of PPE accordingly.

The amount of PPE to be worn/used depends on the individual. I know many beekeepers who only ever wear veils (me included). They find the suits and gloves too cumbersome, awkward, and at times, dangerously hot. That does not mean that suits/gloves have no place in bee husbandry. There are certainly times when one should be fully suited, especially when working abnormally defensive colonies (i.e. African honey bees). New beekeepers often are expected to wear full bee suits, but I know many professional beekeepers who do as well. PPE is a matter of safety and taste. I recommend that people wear what they are comfortable wearing, but that they own the complete set of standard PPE for times that it must be used.

I will note that new beekeepers especially are vulnerable to the opinions of other beekeepers when considering what PPE to wear. Working bees without any PPE is seen as macho or even necessary to prove one’s worth as a beekeeper. However, it can also be very dangerous. I always recommend that new beekeepers overdo their PPE and then back off as they become comfortable working with bees. Some individuals will never divorce themselves from full PPE and that decision should be respected.

On the other hand, I believe that I became a better beekeeper when I quit using gloves. People who wear gloves often handle colonies with less finesse than do people who do not use gloves. This is due to a simple fact – gloveless beekeepers have learned how to work a colony to minimize stings. They learned what behaviors/actions excite bees and they have eliminated those behaviors/actions from their own repertoire. Watching a person who does not wear gloves work bees reminds me of watching a conductor lead an orchestra. There is a melody and rhythm to their work. Regardless, I will reemphasize that beekeepers should consider their safety and the safety of others when deciding how to approach their use of PPE.

Bee Veil
The first piece of PPE, and arguably the most essential, is the bee veil (Figure 1). Its purpose is simple: protect the head and neck area from bee stings. Though I have worked bees many times in the past without wearing a veil, I feel that veil-less beekeepers are taking a risk. Bee stings to the throat, mouth, nose, and eyes can result in significant injury and even death in some cases.

Veils come in all shapes and sizes, but most share a basic structure. This includes a (1) helmet/hat/scalp-cover that goes on top of the head, (2) black screen mesh that surrounds the face and head, (3)  a looser screen netting that goes around the throat and (4) some sort of fastener to fix the veil to the body (Figure 1). The more traditional veils have hard plastic, pith, or other types of helmets that are worn on top of the head. These protect the scalp from bee stings and they also provide the infrastructure from which the screen mesh is hung around the face. The helmets are often vented and some contain hooks or other catches that keep the screen material from “riding” to the top of the helmet. Many new veils omit the need for helmets and instead, use a wired-cloth material to serve in place of the helmet. These, typically, are one-piece veils.

Regardless of the head covering, all veils contain screen mesh material that protects the face. The mesh is usually black, to reduce glare, and often made of metal, though mesh fabric is becoming increasingly popular. The black mesh usually goes around the front, sides, and back of the head. Some veil styles only include see-through black mesh in the face area.
Veils are always anchored to the body to prevent bees from crawling into the veil through the bottom (Figure 2). To that end, veils can be tied (more conventional) or zipped (becoming increasingly popular) to the PPE worn around the torso area. The value of tied veils is that they can be used on any outfit or even no outfit at all for the friskier beekeepers. The downside is that improperly-tied, and sometimes even properly-tied, veils are navigable by bees, which are able to crawl up from the bottom and into the veil. Zipper-anchored veils can only be attached to the suit/shirt that has the other half of the zipper track. So, they are limited in usability across multiple outfits. What they lose in transportability, they make up for with impenetrability. Zipped veils are nearly impenetrable to bees. I say “nearly” because the zippers on a zipped veil meet and often leave a small hole at the meeting junction. Most manufacturers of suit/veil combos cover this hole with Velcro material. Furthermore, tears in the veil fabric allow bees into the veil, despite how well it is zipped to the body.

I want to reemphasize my statement about the vast diversity of veil styles. Some are made only of screen fabric, making them foldable, collapsible, easily packed away, etc. Others are huge, bulky, etc. Some tie in the front, others in the back. Some keep the screen mesh away from the face, while others put it very close to the face. This diversity in styles allows beekeepers to choose the type of veil that best meets their needs.

March 2014

 The Langstroth Hive

by Jamie Ellis

(excerpt)

Managed honey bees have lived in a number of different types of hives designed by beekeepers over the last couple of centuries. The early hives were simply cavities of any type into which beekeepers would install a swarm of bees. Though honey bees will readily nest in many types of cavities provided to them, one cannot manage a colony easily if it is allowed to make comb in any direction it wishes. Given the choice, bees will attach comb to the ceiling of their home and layer it vertically in sheets as the hive grows. Beekeepers wanting to work these colonies and harvest the honey they contained had to disturb the bees significantly. Entire combs often were cut out of a target hive, sometimes leading to the colony’s demise. Beekeepers and hive architects developed a number of hive styles in response to the problem of destructively harvesting honey from colonies. Any review of bee hive development over the years will yield interesting information (and photographs) about the history of hive design.  Ultimately, the bee hive went through many prototypes before arriving at the type of colony most beekeepers use today.

The most commonly-used, “modern” bee hive was designed by Lorenzo Lorraine Langstroth in the mid-to-late 1800’s. Langstroth was a minister, but he also indulged in the art of beekeeping. He is considered by many to be the “Father of Modern Beekeeping” or the “Father of American Beekeeping”. Langstroth’s contribution to hive design rested on a simple observation: worker honey bees do not put wax or propolis in spaces that are 3/8 inch. This distance is now called “bee space”. Due to his observation, Langstroth designed a hive that has internal spacing between all of its components of 3/8 inch, thus making it possible to remove the combs from the colony without them being destroyed. Langstroth developed the first truly successful “movable-frame hive”.

Figure 1 shows the typical Langstroth hive arrangement used by many beekeepers. It is important to remember throughout my discussion of the Langstroth hive that beekeeping is both a profession and an art. As such, opinions vary considerably about the approach to using the various hive components. I simply describe herein the most common parts of a Langstroth hive. Furthermore, the names for each piece of the hive vary somewhat by the region of the U.S. where the piece is used. I try to include as many common names for each piece of equipment as possible, recognizing that I, undoubtedly, will omit some of the names inadvertently.

The lid
All hives are covered by lids (or covers) that protect the hive from the elements. Beekeepers use two major styles of lids on their hives. They are shown in Figure 2 and are the telescoping cover (outer cover) or migratory cover (migratory lid). Telescoping covers are usually covered by a thin piece of sheet metal that offers added protection against the elements. They are called “telescoping” covers because they protrude past (or “telescope”) and hang over the edge of the hive. These lids must be used in conjunction with inner covers (Figure 3) because of bees’ copious use of propolis (a sticky mixture of various plant saps and resins). Bees will glue the lid to the frames underneath it using propolis. Because telescoping covers hang over the edges of the uppermost super, one cannot easily pry such a cover from the frames if it is glued to them, hence the need for an inner cover. Inner covers fit flush with the uppermost super so they can be pried from the frames below. Most inner covers also contain a hole that accommodates the Porter bee escape, a device used as a one-way valve for limiting bee return to the area left when traversing the escape. The inner cover also can aid in the upward ventilation of a colony if a notch is cut in its rim. Air can leave the colony first through the hole that accommodates the bee escape and then through the notch in the rim.

The benefits of telescoping covers/inner covers lie with their sturdiness and resistance to the elements. Commercial beekeepers typically do not like to use them because they are bulky and expensive compared to the alternative lid style available. Furthermore, the telescoping nature of the lids does not allow colonies to be stacked close to one another, thus resulting in a loss of space efficiency when loading colonies on a vehicle to move them.
Many beekeepers use migratory lids (Figure 2), so named because they facilitate the migratory nature of some bee hives. The migratory lid lies flush on the uppermost super so colonies can be stacked tightly together on a moving truck. Migratory lids often contain a hole into which an inverted jar can be placed for purposes of feeding bees. The lid of the feed jar (pointing down into the colony) contains small holes from which the bees can drink sugar water or corn syrup.

The “boxes”
Langstroth hives are composed of a series of stackable boxes that can be added or removed as the hive grows or shrinks respectively. The boxes are called a number of different names (see Table 1). However, they are typically referred to as “supers” when used for honey production or “brood box” when they house a laying queen and the resulting brood. They may even be called “hive bodies” since they constitute the external, physical structure of the hives. The name “super” likely comes from the idea that more of the boxes can be added to the top of a colony. Beekeepers use “super” as a noun (the physical box) and a verb (to “super” a colony is to add more boxes to it). 

There are three heights of boxes used for the Langstroth hive. They are the deep, medium (or Illinois) and shallow boxes. Most typical hive arrangements (such as that shown in Figure 1) have 1-2 deep boxes used as the brood chamber(s) and 1+ honey supers which are usually shallow or medium supers. That convention is changing today as many people find it easier to work colonies composed strictly of shallow or medium boxes. A full deep box can weigh 60+ lbs, depending on the comb contents (brood, honey, etc.). Full shallow and medium boxes weigh significantly less. Some people, such as children and the elderly, find colonies composed exclusively of these two box types to be more conducive to hive management.

The boxes are made to accommodate “frames” and the industry standard box has room for 10 frames. Many beekeepers are beginning to use 8-frame boxes due to the lighter weight of the resulting colony. One final note: I recommend that beekeepers not use shallow AND medium supers in their operations. Shallow frames can fit in medium supers, leading to management inconveniences further down the road. Beekeepers typically choose one or the other box to use, but not both.

The frames
The beauty of the Langstroth colony .....

February 2014

 Why Keep Bees?

by Jamie Ellis

(excerpt)

   Humans have had a long-standing association with honey bees. As a species, we have interacted with honey bees for thousands of years. Honey bees have been written about in the Holy Bible, represented in Egyptian hieroglyphics, and discussed by Greek philosophers. Their likeness is found in cave and cliff paintings, their products valued by noblemen and “commoners” alike.

Man has always been fascinated with honey bees. This fascination likely was originally born out of our longing for the sweet honey that bees produce. However, our appreciation of bees for other reasons has grown tremendously since our earliest years climbing cliffs/trees to harvest the “sweet nectar of the gods”. Herein, I will discuss some of the many reasons people keep bees. Though this list is not inclusive, I hope it will give you a greater appreciation for the insect that has long-captivated our own species.

1) Honey – Man’s longest association with bees likely stems from our love of honey (Figure 1). Honey is nature’s sweetener. Bees produce it by gathering nectar (sugar water) from flowers, mixing the nectar with enzymes, and dehydrating it by circulating air through the nest. Honey comes in all aromas, colors and flavors, those being determined by the original floral nectar source. Diversity is honey’s crowing attribute and humans find it irresistible. Consequently, many people keep bees to produce honey, either for themselves or to share with others.
2) Crop pollination – Honey is an important product of bee hives, but bees’ value as crop pollinators is what ultimately makes them indispensable to man (Figure 2). A large number of beekeepers (especially hobbyists) begin to keep bees originally because they grow fruits and vegetables in their yards and they need bees to pollinate their crops. The value of bees in general, and honey bees specifically, to man’s food supply is difficult to calculate. However, experts agree that honey bees are an important component of agriculture. This message is becoming common knowledge, thus driving gardeners managing gardens of all sizes to indulge in the art of beekeeping.

3) Other hive products – Honey bees produce a number of products that mankind finds valuable. These include wax, propolis, pollen, royal jelly, and venom. Beeswax is used in all types of products from candles and lip balm to cosmetics and furniture. Propolis, a product bees derive from plant saps and resins, is used in many cultures for medicinal purposes. Like propolis, royal jelly and bee venom are harvested from hives and used for all sorts of purported health reasons. Mead, honey alcohol, is not a hive product per se because it is not produced in the hive. However, it is derived from honey and may even be the earliest fermented beverage.

4) Business – Commercial, sideline, and some hobbyist beekeepers keep bees as a business. Honey bees are the foundation of all sorts of businesses. Beekeepers use bees to produce honey for sale, to produce the “other hive products” mentioned above, and as pollinators of our nation’s crops. It is fair to say that most of the honey bee colonies kept in the United States are kept by commercial beekeepers who use the bees for purposes of crop pollination. Honey bees support other industries as well. These include the commercial queen and package bee industries and the beekeeping equipment/supply industry.

5) Wood working – Beekeepers work with wood. Colonies and their components are, usually, made of wood. Consequently, those who like to work with wood can find joy as a beekeeper (Figure 3). Granted, the colonies we use are very basic in design (they are rectangular boxes); so they do not present a creative challenge to master craftsmen. However, I have seen woodworkers, cabinet makers, etc. find joy in designing the perfect hives out of the perfect wood.

6) Art – Some people keep bees because of the artistic nature of the creature. Undoubtedly, art is everywhere. You do not have to work with bees to appreciate natural art. However, there is a certain art associated with our craft. This manifests in our management techniques, but it is also expressed by the bees themselves, how their colonies are developed, how their nests are built. You do not have to look hard to know that honey bees are used in art everywhere. They show up in the stained-glass windows of cathedrals and can be found painted on soap dishes or stitched into dish towels. Arguably, life is art and bee colonies are full of life. Beekeeping, consequently, can satisfy even the most artistic among us.

7) Science – Honey bees, their natural histories, their colony structure, etc. are a bountiful well of natural discovery. The honey bee has been the subject of thousands of research projects and the principal research tool used by a similar number of investigators. These include Nobel Prize scientists and middle school science fair students.  Honey bees have been used to make advances in genetics, microbiology, behavior, chemical ecology and in other research fields. I know that I speak for many others when I say that honey bees are a subject of intense, scientific fasciation.

8) Nature – Man has always been intimately linked to nature. Today, we derive from it medicines, recreation, fuel, pleasure, lodging, solitude, etc. “Back-to-nature” movements are popular, especially as we try to protect the earth’s natural habitats from destruction. Beekeeping represents that larger movement. Honey bees have not been domesticated (despite the fact that we “keep” them); so, we essentially keep wild animals in white boxes and attempt to manage them in a way that is mutually beneficial. Consequently, they provide a clear link between us and the environment that surrounds us, between us and the natural world of which we are a part.